LP

Liudmila Prokhorenkova

Publications

  • Characterizing Graph Datasets for Node Classification: Homophily-Heterophily Dichotomy and Beyond

    Graph machine learningMachine learning theory
    Oleg Platonov
    Denis Kuznedelev
    Artem Babenko
    Liudmila Prokhorenkova
    NeurIPS, 2023

    Homophily is a graph property describing the tendency of edges to connect similar nodes; the opposite is called heterophily. It is often believed that heterophilous graphs are challenging for standard message-passing graph neural networks (GNNs), and much effort has been put into developing efficient methods for this setting. However, there is no universally agreed-upon measure of homophily in the literature. In this work, we show that commonly used homophily measures have critical drawbacks preventing the comparison of homophily levels across different datasets. For this, we formalize desirable properties for a proper homophily measure and verify which measures satisfy which properties. In particular, we show that a measure that we call adjusted homophily satisfies more desirable properties than other popular homophily measures while being rarely used in graph machine learning literature. Then, we go beyond the homophily-heterophily dichotomy and propose a new characteristic that allows one to further distinguish different sorts of heterophily. The proposed label informativeness (LI) characterizes how much information a neighbor's label provides about a node's label. We prove that this measure satisfies important desirable properties. We also observe empirically that LI better agrees with GNN performance compared to homophily measures, which confirms that it is a useful characteristic of the graph structure.

  • Evaluating Robustness and Uncertainty of Graph Models Under Structural Distributional Shifts

    Graph machine learningDistributional shiftUncertainty estimation
    Gleb Bazhenov
    Denis Kuznedelev
    Andrey Malinin
    Artem Babenko
    Liudmila Prokhorenkova
    NeurIPS, 2023

    In reliable decision-making systems based on machine learning, models have to be robust to distributional shifts or provide the uncertainty of their predictions. In node-level problems of graph learning, distributional shifts can be especially complex since the samples are interdependent. To evaluate the performance of graph models, it is important to test them on diverse and meaningful distributional shifts. However, most graph benchmarks considering distributional shifts for node-level problems focus mainly on node features, while structural properties are also essential for graph problems. In this work, we propose a general approach for inducing diverse distributional shifts based on graph structure. We use this approach to create data splits according to several structural node properties: popularity, locality, and density. In our experiments, we thoroughly evaluate the proposed distributional shifts and show that they can be quite challenging for existing graph models. We also reveal that simple models often outperform more sophisticated methods on the considered structural shifts. Finally, our experiments provide evidence that there is a trade-off between the quality of learned representations for the base classification task under structural distributional shift and the ability to separate the nodes from different distributions using these representations.

  • Neural Algorithmic Reasoning Without Intermediate Supervision

    Neural algorithmic reasoning
    Gleb Rodionov
    Liudmila Prokhorenkova
    NeurIPS, 2023

    Neural algorithmic reasoning is an emerging area of machine learning focusing on building models that can imitate the execution of classic algorithms, such as sorting, shortest paths, etc. One of the main challenges is to learn algorithms that are able to generalize to out-of-distribution data, in particular with significantly larger input sizes. Recent work on this problem has demonstrated the advantages of learning algorithms step-by-step, giving models access to all intermediate steps of the original algorithm. In this work, we instead focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision. We propose simple but effective architectural improvements and also build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory. We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRS Algorithmic Reasoning Benchmark and achieves new state-of-the-art results for several problems, including sorting, where we obtain significant improvements. Thus, learning without intermediate supervision is a promising direction for further research on neural reasoners.

Posts

Datasets

  • Heterophilous graph datasets

    Graph machine learning
    Oleg Platonov
    Denis Kuznedelev
    Michael Diskin
    Artem Babenko
    Liudmila Prokhorenkova

    A graph dataset is called heterophilous if nodes prefer to connect to other nodes that are not similar to them. For example, in financial transaction networks, fraudsters often perform transactions with non-fraudulent users, and in dating networks, most connections are between people of opposite genders. Learning under heterophily is an important subfield of graph ML. Thus, having diverse and reliable benchmarks is essential.

    We propose a benchmark of five diverse heterophilous graphs that come from different domains and exhibit a variety of structural properties. Our benchmark includes a word dependency graph Roman-empire, a product co-purchasing network Amazon-ratings, a synthetic graph emulating the minesweeper game Minesweeper, a crowdsourcing platform worker network Tolokers, and a question-answering website interaction network Questions.

  • Shifts Dataset

    Distributional shiftUncertainty estimation Tabular dataMachine translationNatural language processing
    Andrey Malinin
    Neil Band
    Yarin Gal
    Mark J. F. Gales
    Alexander Ganshin
    German Chesnokov
    Alexey Noskov
    Andrey Ploskonosov
    Liudmila Prokhorenkova
    Ivan Provilkov
    Vatsal Raina
    Vyas Raina
    Denis Roginskiy
    Mariya Shmatova
    Panos Tigas
    Boris Yangel

    The Shifts Dataset contains curated and labeled examples of real, 'in-the-wild' distributional shifts across three large-scale tasks. Specifically, it contains tabular weather prediction, machine translation, and vehicle motion prediction tasks' data used in Shifts Challenge 2021. Dataset shift is ubiquitous in all of these tasks and modalities.