Generative models

Generative models in computer vision are powerful tool for various applications.

Area 4. Generative models.svg

Posts

Publications

  • TabDDPM: Modelling Tabular Data with Diffusion Models

    Tabular dataGenerative models
    Akim Kotelnikov
    Dmitry Baranchuk
    Ivan Rubachev
    Artem Babenko
    ICML, 2023

    Denoising diffusion probabilistic models are becoming the leading generative modeling paradigm for many important data modalities. Being the most prevalent in the computer vision community, diffusion models have recently gained some attention in other domains, including speech, NLP, and graph-like data. In this work, we investigate if the framework of diffusion models can be advantageous for general tabular problems, where data points are typically represented by vectors of heterogeneous features. The inherent heterogeneity of tabular data makes it quite challenging for accurate modeling since the individual features can be of a completely different nature, i.e., some of them can be continuous and some can be discrete. To address such data types, we introduce TabDDPM --- a diffusion model that can be universally applied to any tabular dataset and handles any feature types. We extensively evaluate TabDDPM on a wide set of benchmarks and demonstrate its superiority over existing GAN/VAE alternatives, which is consistent with the advantage of diffusion models in other fields.

  • Training Transformers Together

    Computer visionLarge-scale machine learningGenerative models
    Alexander Borzunov
    Max Ryabinin
    Tim Dettmers
    Quentin Lhoest
    Lucile Saulnier
    Michael Diskin
    Yacine Jernite
    Thomas Wolf
    NeurIPS Demos, 2022

    The infrastructure necessary for training state-of-the-art models is becoming overly expensive, which makes training such models affordable only to large corporations and institutions. Recent work proposes several methods for training such models collaboratively, i.e., by pooling together hardware from many independent parties and training a shared model over the Internet. In this demonstration, we collaboratively trained a text-to-image transformer similar to OpenAI DALL-E. We invited the viewers to join the ongoing training run, showing them instructions on how to contribute using the available hardware. We explained how to address the engineering challenges associated with such a training run (slow communication, limited memory, uneven performance between devices, and security concerns) and discussed how the viewers can set up collaborative training runs themselves. Finally, we show that the resulting model generates images of reasonable quality on a number of prompts.

  • When, Why, and Which Pretrained GANs Are Useful?

    Computer visionGenerative models
    Timofey Grigoryev
    Andrey Voynov
    Artem Babenko
    ICLR, 2022

    The literature has proposed several methods to finetune pretrained GANs on new datasets, which typically results in higher performance compared to training from scratch, especially in the limited-data regime. However, despite the apparent empirical benefits of GAN pretraining, its inner mechanisms were not analyzed in-depth, and understanding of its role is not entirely clear. Moreover, the essential practical details, e.g., selecting a proper pretrained GAN checkpoint, currently do not have rigorous grounding and are typically determined by trial and error. This work aims to dissect the process of GAN finetuning. First, we show that initializing the GAN training process by a pretrained checkpoint primarily affects the model's coverage rather than the fidelity of individual samples. Second, we explicitly describe how pretrained generators and discriminators contribute to the finetuning process and explain the previous evidence on the importance of pretraining both of them. Finally, as an immediate practical benefit of our analysis, we describe a simple recipe to choose an appropriate GAN checkpoint that is the most suitable for finetuning to a particular target task. Importantly, for most of the target tasks, Imagenet-pretrained GAN, despite having poor visual quality, appears to be an excellent starting point for finetuning, resembling the typical pretraining scenario of discriminative computer vision models.