Generative models

Generative models in computer vision are powerful tool for various applications.

Area 4. Generative models.svg



  • Training Transformers Together

    Large-scale machine learningComputer visionGenerative models
    Alexander Borzunov
    Max Ryabinin
    Tim Dettmers
    Quentin Lhoest
    Lucile Saulnier
    Michael Diskin
    Yacine Jernite
    Thomas Wolf
    NeurIPS Demos,

    The infrastructure necessary for training state-of-the-art models is becoming overly expensive, which makes training such models affordable only to large corporations and institutions. Recent work proposes several methods for training such models collaboratively, i.e., by pooling together hardware from many independent parties and training a shared model over the Internet. In this demonstration, we collaboratively trained a text-to-image transformer similar to OpenAI DALL-E. We invited the viewers to join the ongoing training run, showing them instructions on how to contribute using the available hardware. We explained how to address the engineering challenges associated with such a training run (slow communication, limited memory, uneven performance between devices, and security concerns) and discussed how the viewers can set up collaborative training runs themselves. Finally, we show that the resulting model generates images of reasonable quality on a number of prompts.

  • When, Why, and Which Pretrained GANs Are Useful?

    Generative modelsComputer vision
    Timofey Grigoryev
    Andrey Voynov
    Artem Babenko

    The literature has proposed several methods to finetune pretrained GANs on new datasets, which typically results in higher performance compared to training from scratch, especially in the limited-data regime. However, despite the apparent empirical benefits of GAN pretraining, its inner mechanisms were not analyzed in-depth, and understanding of its role is not entirely clear. Moreover, the essential practical details, e.g., selecting a proper pretrained GAN checkpoint, currently do not have rigorous grounding and are typically determined by trial and error. This work aims to dissect the process of GAN finetuning. First, we show that initializing the GAN training process by a pretrained checkpoint primarily affects the model's coverage rather than the fidelity of individual samples. Second, we explicitly describe how pretrained generators and discriminators contribute to the finetuning process and explain the previous evidence on the importance of pretraining both of them. Finally, as an immediate practical benefit of our analysis, we describe a simple recipe to choose an appropriate GAN checkpoint that is the most suitable for finetuning to a particular target task. Importantly, for most of the target tasks, Imagenet-pretrained GAN, despite having poor visual quality, appears to be an excellent starting point for finetuning, resembling the typical pretraining scenario of discriminative computer vision models.

  • Latent Transformations via NeuralODEs for GAN-Based Image Editing

    Generative modelsComputer vision
    Valentin Khrulkov
    Leyla Mirvakhabova
    Ivan Oseledets
    Artem Babenko

    Recent advances in high-fidelity semantic image editing heavily rely on the presumably disentangled latent spaces of the state-of-the-art generative models, such as StyleGAN. Specifically, recent works show that it is possible to achieve decent controllability of attributes in the face images via linear shifts along with latent directions. Several recent methods address the discovery of such directions, implicitly assuming that the state-of-the-art GANs learn the latent spaces with inherently linearly separable attribute distributions and semantic vector arithmetic properties. In our work, we show that nonlinear latent code manipulations realized as flows of a trainable Neural ODE are beneficial for many practical non-face image domains with more complex non-textured factors of variation. In particular, we investigate a large number of datasets with known attributes and demonstrate that certain attribute manipulations are challenging to be obtained with linear shifts only.