Graph-based Nearest Neighbor Search in Hyperbolic Spaces
ICLR,
2022The nearest neighbor search (NNS) problem is widely studied in Euclidean space, and graph-based algorithms are known to outperform other approaches for this task. However, hyperbolic geometry often allows for better data representation in various domains, including graphs, words, and images. In this paper, we show that graph-based approaches are also well suited for hyperbolic geometry. From a theoretical perspective, we rigorously analyze the time and space complexity of graph-based NNS, assuming that an n-element dataset is uniformly distributed within a d-dimensional ball of radius R in the hyperbolic space of curvature -1. Under some conditions on R and d, we derive the time and space complexity of graph-based NNS and compare the obtained results with known guarantees for the Euclidean case. Interestingly, in the dense setting (d << log(n)) and under some assumptions on the radius R, graph-based NNS has lower time complexity in the hyperbolic space. This agrees with our experiments: we consider datasets embedded in hyperbolic and Euclidean spaces and show that graph-based NNS can be more efficient in the hyperbolic space. We also demonstrate that graph-based methods outperform other existing baselines for hyperbolic NNS. Overall, our theoretical and empirical analysis suggests that graph-based NNS can be considered a default approach for similarity search in hyperbolic spaces.
Overlapping Spaces for Compact Graph Representations
NeurIPS,
2021Various non-trivial spaces are becoming popular for embedding structured data such as graphs, texts, or images. Following spherical and hyperbolic spaces, more general product spaces have been proposed. However, searching for the best configuration of a product space is a resource-intensive procedure, which reduces the practical applicability of the idea. We generalize the concept of product space and introduce an overlapping space that does not have the configuration search problem. The main idea is to allow subsets of coordinates to be shared between spaces of different types (Euclidean, hyperbolic, spherical). As a result, we often need fewer coordinates to store the objects. Additionally, we propose an optimization algorithm that automatically learns the optimal configuration. Our experiments confirm that overlapping spaces outperform the competitors in graph embedding tasks with different evaluation metrics. We also perform an empirical analysis in a realistic information retrieval setup, where we compare all spaces by incorporating them into DSSM. In this case, the proposed overlapping space consistently achieves nearly optimal results without any configuration tuning. This allows for reducing training time, which can be essential in large-scale applications.
Good Classification Measures and How to Find Them
NeurIPS,
2021Several performance measures can be used for evaluating classification results: accuracy, F-measure, and many others. Can we say that some of them are better than others, or, ideally, choose one measure that is best in all situations? To answer this question, we conduct a systematic analysis of classification performance measures: we formally define a list of desirable properties and theoretically analyze which measures satisfy which properties. We also prove an impossibility theorem: some desirable properties cannot be simultaneously satisfied. Finally, we propose a new family of measures satisfying all desirable properties except one. This family includes the Matthews correlation coefficient and a so-called symmetric balanced accuracy that was not previously used in classification literature. We believe that our systematic approach gives an important tool to practitioners for adequately evaluating classification results.
LP
Liudmila Prokhorenkova
Publications
Posts
- October 12, 2022Research
Graph-based nearest neighbor search
- December 8, 2021Research
How to validate validation measures