Label-Efficient Semantic Segmentation with Diffusion Models
ICLR,
2022Denoising diffusion probabilistic models have recently received much research attention since they outperform alternative approaches, such as GANs, and currently provide state-of-the-art generative performance. The superior performance of diffusion models has made them an appealing tool in several applications, including inpainting, super-resolution, and semantic editing. In this paper, we demonstrate that diffusion models can also serve as an instrument for semantic segmentation, especially in the setup when labeled data is scarce. In particular, for several pretrained diffusion models, we investigate the intermediate activations from the networks that perform the Markov step of the reverse diffusion process. We show that these activations effectively capture the semantic information from an input image and appear to be excellent pixel-level representations for the segmentation problem. Based on these observations, we describe a simple segmentation method, which can work even if only a few training images are provided. Our approach significantly outperforms the existing alternatives on several datasets for the same amount of human supervision.
Graph-based Nearest Neighbor Search in Hyperbolic Spaces
ICLR,
2022The nearest neighbor search (NNS) problem is widely studied in Euclidean space, and graph-based algorithms are known to outperform other approaches for this task. However, hyperbolic geometry often allows for better data representation in various domains, including graphs, words, and images. In this paper, we show that graph-based approaches are also well suited for hyperbolic geometry. From a theoretical perspective, we rigorously analyze the time and space complexity of graph-based NNS, assuming that an n-element dataset is uniformly distributed within a d-dimensional ball of radius R in the hyperbolic space of curvature -1. Under some conditions on R and d, we derive the time and space complexity of graph-based NNS and compare the obtained results with known guarantees for the Euclidean case. Interestingly, in the dense setting (d << log(n)) and under some assumptions on the radius R, graph-based NNS has lower time complexity in the hyperbolic space. This agrees with our experiments: we consider datasets embedded in hyperbolic and Euclidean spaces and show that graph-based NNS can be more efficient in the hyperbolic space. We also demonstrate that graph-based methods outperform other existing baselines for hyperbolic NNS. Overall, our theoretical and empirical analysis suggests that graph-based NNS can be considered a default approach for similarity search in hyperbolic spaces.
Learning to Route in Similarity Graphs
ICML,
2019Recently similarity graphs became the leading paradigm for efficient nearest neighbor search, outperforming traditional tree-based and LSH-based methods. Similarity graphs perform the search via greedy routing: a query traverses the graph and in each vertex moves to the adjacent vertex that is the closest to this query. In practice, similarity graphs are often susceptible to local minima, when queries do not reach its nearest neighbors, getting stuck in suboptimal vertices. In this paper we propose to learn the routing function that overcomes local minima via incorporating information about the graph global structure. In particular, we augment the vertices of a given graph with additional representations that are learned to provide the optimal routing from the start vertex to the query nearest neighbor. By thorough experiments, we demonstrate that the proposed learnable routing successfully diminishes the local minima problem and significantly improves the overall search performance.
DB
Dmitry Baranchuk
Publications
Posts
- October 12, 2022Research
Graph-based nearest neighbor search
- April 26, 2021Research
Benchmarks for Billion-Scale Similarity Search