Large-scale machine learning

Today, training most powerful models often takes significant resources. Our research aims to make large-scale training more efficient and accessible to the entire machine learning community.

Area 7. Large-scale machine learning.svg

Posts

Publications

  • Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models

    Large-scale machine learningNatural language processing
    Alina Shutova
    Vladimir Malinovskii
    Vage Egiazarian
    Denis Kuznedelev
    Denis Mazur
    Nikita Surkov
    Ivan Ermakov
    Dan Alistarh
    ICML, 2025

    Efficient real-world deployments of large language models (LLMs) rely on Key-Value (KV) caching for processing and generating long outputs, reducing the need for repetitive computation. For large contexts, Key-Value caches can take up tens of gigabytes of device memory, as they store vector representations for each token and layer. Recent work has shown that the cached vectors can be compressed through quantization, pruning or merging, but these techniques often compromise quality towards higher compression rates. In this work, we aim to improve Key & Value compression by exploiting two observations: 1) the inherent dependencies between keys and values across different layers, and 2) the existence of high-compression methods for internal network states (e.g. attention Keys & Values). We propose AQUA-KV, an adaptive quantization for Key-Value caches that relies on compact adapters to exploit existing dependencies between Keys and Values, and aims to “optimally” compress the information that cannot be predicted. AQUA-KV significantly improves compression rates, while maintaining high accuracy on state-of-the-art LLM families. On Llama 3.2 LLMs, we achieve near-lossless inference at 2-2.5 bits per value with under 1 relative error in perplexity and LongBench scores. AQUA-KV is one-shot, simple, and efficient: it can be calibrated on a single GPU within 1-6 hours, even for 70B models.

  • EvoPress: Accurate Dynamic Model Compression via Evolutionary Search

    Model compressionLarge-scale machine learningNatural language processing
    Oliver Sieberling
    Denis Kuznedelev
    Eldar Kurtic
    Dan Alistarh
    ICML, 2025

    The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by dynamic, non-uniform compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on estimating the “importance” of a given layer, implicitly assuming that layers contribute independently to the overall compression error. We begin from the motivating observation that this independence assumption does not generally hold for LLM compression: pruning a model further may even significantly recover performance. To address this, we propose EvoPress, a novel evolutionary framework for dynamic LLM compression. By formulating dynamic compression as a general optimization problem, EvoPress identifies optimal compression profiles in a highly efficient manner, and generalizes across diverse models and compression techniques. Via EvoPress, we achieve state-of-the-art performance for dynamic compression of Llama, Mistral, and Phi models, setting new benchmarks for structural pruning (block/layer dropping), unstructured sparsity, and quantization with dynamic bitwidths.

  • PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression

    Model compressionLarge-scale machine learningNatural language processing
    Vladimir Malinovskii
    Denis Mazur
    Ivan Ilin
    Denis Kuznedelev
    Konstantin Burlachenko
    Kai Yi
    Dan Alistarh
    Peter Richtarik
    NeurIPS, 2024

    There has been significant interest in "extreme" compression of large language models (LLMs), i.e. to 1-2 bits per parameter, which allows such models to be executed efficiently on resource-constrained devices. Existing work focused on improved one-shot quantization techniques and weight representations; yet, purely post-training approaches are reaching diminishing returns in terms of the accuracy-vs-bit-width trade-off. State-of-the-art quantization methods such as QuIP# and AQLM include fine-tuning (part of) the compressed parameters over a limited amount of calibration data; however, such fine-tuning techniques over compressed weights often make exclusive use of straight-through estimators (STE), whose performance is not well-understood in this setting. In this work, we question the use of STE for extreme LLM compression, showing that it can be sub-optimal, and perform a systematic study of quantization-aware fine-tuning strategies for LLMs. We propose PV-Tuning - a representation-agnostic framework that generalizes and improves upon existing fine-tuning strategies, and provides convergence guarantees in restricted cases. On the practical side, when used for 1-2 bit vector quantization, PV-Tuning outperforms prior techniques for highly-performant models such as Llama and Mistral. Using PV-Tuning, we achieve the first Pareto-optimal quantization for Llama-2 family models at 2 bits per parameter.