Inverse Bridge Matching Distillation
ICML, 2025Learning diffusion bridge models is easy; making them fast and practical is an art. Diffusion bridge models (DBMs) are a promising extension of diffusion models for applications in image-to-image translation. However, like many modern diffusion and flow models, DBMs suffer from the problem of slow inference. To address it, we propose a novel distillation technique based on the inverse bridge matching formulation and derive the tractable objective to solve it in practice. Unlike previously developed DBM distillation techniques, the proposed method can distill both conditional and unconditional types of DBMs, distill models in a one-step generator, and use only the corrupted images for training. We evaluate our approach for both conditional and unconditional types of bridge matching on a wide set of setups, including super-resolution, JPEG restoration, sketch-to-image, and other tasks, and show that our distillation technique allows us to accelerate the inference of DBMs from 4x to 100x and even provide better generation quality than used teacher model depending on particular setup.
Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps
NeurIPS, 2024Diffusion distillation represents a highly promising direction for achieving faithful text-to-image generation in a few sampling steps. However, despite recent successes, existing distilled models still do not provide the full spectrum of diffusion abilities, such as real image inversion, which enables many precise image manipulation methods. This work aims to enrich distilled text-to-image diffusion models with the ability to effectively encode real images into their latent space. To this end, we introduce invertible Consistency Distillation (iCD), a generalized consistency distillation framework that facilitates both high-quality image synthesis and accurate image encoding in only 3-4 inference steps. Though the inversion problem for text-to-image diffusion models gets exacerbated by high classifier-free guidance scales, we notice that dynamic guidance significantly reduces reconstruction errors without noticeable degradation in generation performance. As a result, we demonstrate that iCD equipped with dynamic guidance may serve as a highly effective tool for zero-shot text-guided image editing, competing with more expensive state-of-the-art alternatives.
Your Student is Better Than Expected: Adaptive Teacher-Student Collaboration for Text-Conditional Diffusion Models
CVPR, 2024Knowledge distillation methods have recently shown to be a promising direction to speedup the synthesis of large-scale diffusion models by requiring only a few inference steps. While several powerful distillation methods were recently proposed, the overall quality of student samples is typically lower compared to the teacher ones, which hinders their practical usage. In this work, we investigate the relative quality of samples produced by the teacher text-to-image diffusion model and its distilled student version. As our main empirical finding, we discover that a noticeable portion of student samples exhibit superior fidelity compared to the teacher ones, despite the "approximate" nature of the student. Based on this finding, we propose an adaptive collaboration between student and teacher diffusion models for effective text-to-image synthesis. Specifically, the distilled model produces the initial sample, and then an oracle decides whether it needs further improvements with a slow teacher model. Extensive experiments demonstrate that the designed pipeline surpasses state-of-the-art text-to-image alternatives for various inference budgets in terms of human preference. Furthermore, the proposed approach can be naturally used in popular applications such as text-guided image editing and controllable generation.
Dmitry Baranchuk
Publications
Posts
- October 12, 2022Research
Graph-based nearest neighbor search
- April 26, 2021Research
Benchmarks for Billion-Scale Similarity Search
Datasets
Text-to-Image dataset for billion-scale similarity search
Yandex Text-to-Image (T2I) dataset is collected to foster the research in billion-scale nearest neighbor search (NNS) when query distribution differs from the indexing one. In particular, this dataset addresses the cross-domain setting: a user specifies a textual query and requests the search engine to retrieve the most relevant images to the query. Notably, current large-scale indexing methods perform poorly in this setting. Therefore, novel highly-performant indexing solutions robust to out-of-domain queries are in high demand.
The dataset represents a snapshot of the Yandex visual search engine and contains 1 billion 200-dimensional image embeddings for indexing. The image embeddings are produced by the Se-ResNext-101 model. The embeddings for textual queries are extracted by a variant of the DSSM model.
Read more about the data format and how to download the dataset in the related post.