FV

Fedor Velikonivtsev

Conducting research in Efficiency & Graph Machine Learning.

Publications

  • AutoJudge: Judge Decoding Without Manual Annotation

    Speculative and parallel decodingLarge-scale machine learningNatural language processing
    Roman Garipov
    Fedor Velikonivtsev
    Ivan Ermakov
    Ruslan Svirschevski
    Vage Egiazarian
    Max Ryabinin
    NeurIPS, 2025

    We introduce AutoJudge, a method that accelerates large language model (LLM) inference with task-specific lossy speculative decoding. Instead of matching the original model output distribution token-by-token, we identify which of the generated tokens affect the downstream quality of the response, relaxing the distribution match guarantee so that the "unimportant" tokens can be generated faster. Our approach relies on a semi-greedy search algorithm to test which of the mismatches between target and draft models should be corrected to preserve quality and which ones may be skipped. We then train a lightweight classifier based on existing LLM embeddings to predict, at inference time, which mismatching tokens can be safely accepted without compromising the final answer quality. We evaluate the effectiveness of AutoJudge with multiple draft/target model pairs on mathematical reasoning and programming benchmarks, achieving significant speedups at the cost of a minor accuracy reduction. Notably, on GSM8k with the Llama 3.1 70B target model, our approach achieves up to ≈2× speedup over speculative decoding at the cost of ≤1% drop in accuracy. When applied to the LiveCodeBench benchmark, AutoJudge automatically detects programming-specific important tokens, accepting ≥25 tokens per speculation cycle at 2% drop in Pass@1. Our approach requires no human annotation and is easy to integrate with modern LLM inference frameworks.

  • Challenges of Generating Structurally Diverse Graphs

    Graph machine learningGenerative models
    Fedor Velikonivtsev
    Mikhail Mironov
    Liudmila Prokhorenkova
    NeurIPS, 2024

    For many graph-related problems, it can be essential to have a set of structurally diverse graphs. For instance, such graphs can be used for testing graph algorithms or their neural approximations. However, to the best of our knowledge, the problem of generating structurally diverse graphs has not been explored in the literature. In this paper, we fill this gap. First, we discuss how to define diversity for a set of graphs, why this task is non-trivial, and how one can choose a proper diversity measure. Then, for a given diversity measure, we propose and compare several algorithms optimizing it: we consider approaches based on standard random graph models, local graph optimization, genetic algorithms, and neural generative models. We show that it is possible to significantly improve diversity over basic random graph generators. Additionally, our analysis of generated graphs allows us to better understand the properties of graph distances: depending on which diversity measure is used for optimization, the obtained graphs may possess very different structural properties which gives a better understanding of the graph distance underlying the diversity measure.