Which Tricks Are Important for Learning to Rank?
ICML, 2023Nowadays, state-of-the-art learning-to-rank methods are based on gradient-boosted decision trees (GBDT). The most well-known algorithm is LambdaMART which was proposed more than a decade ago. Recently, several other GBDT-based ranking algorithms were proposed. In this paper, we thoroughly analyze these methods in a unified setup. In particular, we address the following questions. Is direct optimization of a smoothed ranking loss preferable over optimizing a convex surrogate? How to properly construct and smooth surrogate ranking losses? To address these questions, we compare LambdaMART with YetiRank and StochasticRank methods and their modifications. We also propose a simple improvement of the YetiRank approach that allows for optimizing specific ranking loss functions. As a result, we gain insights into learning-to-rank techniques and obtain a new state-of-the-art algorithm.
Hyperbolic Vision Transformers: Combining Improvements in Metric Learning
CVPR, 2022Metric learning aims to learn a highly discriminative model encouraging the embeddings of similar classes to be close in the chosen metrics and pushed apart for dissimilar ones. The common recipe is to use an encoder to extract embeddings and a distance-based loss function to match the representations – usually, the Euclidean distance is utilized. An emerging interest in learning hyperbolic data embeddings suggests that hyperbolic geometry can be beneficial for natural data. Following this line of work, we propose a new hyperbolic-based model for metric learning. At the core of our method is a vision transformer with output embeddings mapped to hyperbolic space. These embeddings are directly optimized using modified pairwise cross-entropy loss. We evaluate the proposed model with six different formulations on four datasets achieving the new state-of-the-art performance. The source code is available at https://github.com/htdt/hyp_metric
Neural Side-by-Side: Predicting Human Preferences for No-Reference Super-Resolution Evaluation
CVPR, 2021Super-resolution based on deep convolutional networks is currently gaining much attention from both academia and industry. However, lack of proper evaluation measures makes it difficult to compare approaches, hampering progress in the field. Traditional measures, such as PSNR or SSIM, are known to poorly correlate with the human perception of image quality. Therefore, in existing works common practice is also to report Mean-Opinion-Score (MOS) -- the results of human evaluation of super-resolved images. Unfortunately, the MOS values from different papers are not directly comparable, due to the varying number of raters, their subjectivity, etc. By this paper, we introduce Neural Side-By-Side -- a new measure that allows super-resolution models to be compared automatically, effectively approximating human preferences. Namely, we collect a large dataset of aligned image pairs, which were produced by different super-resolution models. Then each pair is annotated by several raters, who were instructed to choose a more visually appealing image. Given the dataset and the labels, we trained a CNN model that obtains a pair of images and for each image predicts a probability of being more preferable than its counterpart. In this work, we show that Neural Side-By-Side generalizes across both new models and new data. Hence, it can serve as a natural approximation of human preferences, which can be used to compare models or tune hyperparameters without raters' assistance. We open-source the dataset and the pretrained model and expect that it will become a handy tool for researchers and practitioners.
Ranking
Learning to rank is a central problem in information retrieval. The objective is to rank a given set of items to optimize the overall utility of the list.