- January 30, 2019Research
CatBoost: paper at NeurIPS 2018
Gradient boosting
Gradient boosting iteratively combines weak learners (usually decision trees) to create a stronger model. It achieves state-of-the-art results on tabular data with heterogeneous features.
Posts
Publications
Gradient Boosting Performs Gaussian Process Inference
ICLR,
2023This paper shows that gradient boosting based on symmetric decision trees can be equivalently reformulated as a kernel method that converges to the solution of a certain Kernel Ridge Regression problem. Thus, we obtain the convergence to a Gaussian Process' posterior mean, which, in turn, allows us to easily transform gradient boosting into a sampler from the posterior to provide better knowledge uncertainty estimates through Monte-Carlo estimation of the posterior variance. We show that the proposed sampler allows for better knowledge uncertainty estimates leading to improved out-of-domain detection.
SGLB: Stochastic Gradient Langevin Boosting
ICML,
2021This paper introduces Stochastic Gradient Langevin Boosting (SGLB) - a powerful and efficient machine learning framework that may deal with a wide range of loss functions and has provable generalization guarantees. The method is based on a special form of the Langevin diffusion equation specifically designed for gradient boosting. This allows us to theoretically guarantee the global convergence even for multimodal loss functions, while standard gradient boosting algorithms can guarantee only local optimum. We also empirically show that SGLB outperforms classic gradient boosting when applied to classification tasks with 0-1 loss function, which is known to be multimodal.
Boost then Convolve: Gradient Boosting Meets Graph Neural Networks
ICLR,
2021Graph neural networks (GNNs) are powerful models that have been successful in various graph representation learning tasks. Whereas gradient boosted decision trees (GBDT) often outperform other machine learning methods when faced with heterogeneous tabular data. But what approach should be used for graphs with tabular node features? Previous GNN models have mostly focused on networks with homogeneous sparse features and, as we show, are suboptimal in the heterogeneous setting. In this work, we propose a novel architecture that trains GBDT and GNN jointly to get the best of both worlds: the GBDT model deals with heterogeneous features, while GNN accounts for the graph structure. Our model benefits from end-to-end optimization by allowing new trees to fit the gradient updates of GNN. With an extensive experimental comparison to the leading GBDT and GNN models, we demonstrate a significant increase in performance on a variety of graphs with tabular features.