Representations

Constructing high-quality data representations are a necessary component in common machine learning pipelines.

Area 16. Representations.svg

Publications

  • Hyperbolic Vision Transformers: Combining Improvements in Metric Learning

    Computer visionRepresentationsRanking
    Aleksandr Ermolov
    Leyla Mirvakhabova
    Valentin Khrulkov
    Nicu Sebe
    Ivan Oseledets
    CVPR, 2022

    Metric learning aims to learn a highly discriminative model encouraging the embeddings of similar classes to be close in the chosen metrics and pushed apart for dissimilar ones. The common recipe is to use an encoder to extract embeddings and a distance-based loss function to match the representations – usually, the Euclidean distance is utilized. An emerging interest in learning hyperbolic data embeddings suggests that hyperbolic geometry can be beneficial for natural data. Following this line of work, we propose a new hyperbolic-based model for metric learning. At the core of our method is a vision transformer with output embeddings mapped to hyperbolic space. These embeddings are directly optimized using modified pairwise cross-entropy loss. We evaluate the proposed model with six different formulations on four datasets achieving the new state-of-the-art performance. The source code is available at https://github.com/htdt/hyp_metric

  • Graph-based Nearest Neighbor Search in Hyperbolic Spaces

    Machine learning theoryGraph machine learningNearest neighbor searchRepresentations
    Liudmila Prokhorenkova
    Dmitry Baranchuk
    Nikolay Bogachev
    Yury Demidovich
    Alexander Kolpakov
    ICLR, 2022

    The nearest neighbor search (NNS) problem is widely studied in Euclidean space, and graph-based algorithms are known to outperform other approaches for this task. However, hyperbolic geometry often allows for better data representation in various domains, including graphs, words, and images. In this paper, we show that graph-based approaches are also well suited for hyperbolic geometry. From a theoretical perspective, we rigorously analyze the time and space complexity of graph-based NNS, assuming that an n-element dataset is uniformly distributed within a d-dimensional ball of radius R in the hyperbolic space of curvature -1. Under some conditions on R and d, we derive the time and space complexity of graph-based NNS and compare the obtained results with known guarantees for the Euclidean case. Interestingly, in the dense setting (d << log(n)) and under some assumptions on the radius R, graph-based NNS has lower time complexity in the hyperbolic space. This agrees with our experiments: we consider datasets embedded in hyperbolic and Euclidean spaces and show that graph-based NNS can be more efficient in the hyperbolic space. We also demonstrate that graph-based methods outperform other existing baselines for hyperbolic NNS. Overall, our theoretical and empirical analysis suggests that graph-based NNS can be considered a default approach for similarity search in hyperbolic spaces.

  • Overlapping Spaces for Compact Graph Representations

    Graph machine learningRepresentations
    Kirill Shevkunov
    Liudmila Prokhorenkova
    NeurIPS, 2021

    Various non-trivial spaces are becoming popular for embedding structured data such as graphs, texts, or images. Following spherical and hyperbolic spaces, more general product spaces have been proposed. However, searching for the best configuration of a product space is a resource-intensive procedure, which reduces the practical applicability of the idea. We generalize the concept of product space and introduce an overlapping space that does not have the configuration search problem. The main idea is to allow subsets of coordinates to be shared between spaces of different types (Euclidean, hyperbolic, spherical). As a result, we often need fewer coordinates to store the objects. Additionally, we propose an optimization algorithm that automatically learns the optimal configuration. Our experiments confirm that overlapping spaces outperform the competitors in graph embedding tasks with different evaluation metrics. We also perform an empirical analysis in a realistic information retrieval setup, where we compare all spaces by incorporating them into DSSM. In this case, the proposed overlapping space consistently achieves nearly optimal results without any configuration tuning. This allows for reducing training time, which can be essential in large-scale applications.