YG

Yury Gorishniy

Publications

  • TabR: Tabular Deep Learning Meets Nearest Neighbors

    Tabular data
    Yury Gorishniy
    Ivan Rubachev
    Nikolay Kartashev
    Daniil Shlenskii
    Akim Kotelnikov
    Artem Babenko
    ICLR, 2024

    Deep learning (DL) models for tabular data problems (e.g. classification, regression) are currently receiving increasingly more attention from researchers. However, despite the recent efforts, the non-DL algorithms based on gradient-boosted decision trees (GBDT) remain a strong go-to solution for these problems. One of the research directions aimed at improving the position of tabular DL involves designing so-called retrieval-augmented models. For a target object, such models retrieve other objects (e.g. the nearest neighbors) from the available training data and use their features and labels to make a better prediction.

    In this work, we present TabR — essentially, a feed-forward network with a custom k-Nearest-Neighbors-like component in the middle. On a set of public benchmarks with datasets up to several million objects, TabR marks a big step forward for tabular DL: it demonstrates the best average performance among tabular DL models, becomes the new state-of-the-art on several datasets, and even outperforms GBDT models on the recently proposed “GBDT-friendly” benchmark. Among the important findings and technical details powering TabR, the main ones lie in the attention-like mechanism that is responsible for retrieving the nearest neighbors and extracting valuable signal from them. In addition to the higher performance, TabR is simple and significantly more efficient compared to prior retrieval-based tabular DL models.

  • On Embeddings for Numerical Features in Tabular Deep Learning

    Tabular data
    Yury Gorishniy
    Ivan Rubachev
    Artem Babenko
    NeurIPS, 2022

    Recently, Transformer-like deep architectures have shown strong performance on tabular data problems. Unlike traditional models, e.g., MLP, these architectures map scalar values of numerical features to high-dimensional embeddings before mixing them in the main backbone. In this work, we argue that embeddings for numerical features are an underexplored degree of freedom in tabular DL, which allows constructing more powerful DL models and competing with gradient boosted decision trees (GBDT) on some GBDT-friendly benchmarks (that is, where GBDT outperforms conventional DL models). We start by describing two conceptually different approaches to building embedding modules: the first one is based on a piecewise linear encoding of scalar values, and the second one utilizes periodic activations. Then, we empirically demonstrate that these two approaches can lead to significant performance boosts compared to the embeddings based on conventional blocks such as linear layers and ReLU activations. Importantly, we also show that embedding numerical features is beneficial for many backbones, not only for Transformers. Specifically, after proper embeddings, simple MLP-like models can perform on par with the attention-based architectures. Overall, we highlight embeddings for numerical features as an important design aspect with good potential for further improvements in tabular DL.

  • Revisiting Deep Learning Models for Tabular Data

    Tabular data
    Yury Gorishniy
    Ivan Rubachev
    Valentin Khrulkov
    Artem Babenko
    NeurIPS, 2021

    The existing literature on deep learning for tabular data proposes a wide range of novel architectures and reports competitive results on various datasets. However, the proposed models are usually not properly compared to each other and existing works often use different benchmarks and experiment protocols. As a result, it is unclear for both researchers and practitioners what models perform best. Additionally, the field still lacks effective baselines, that is, the easy-to-use models that provide competitive performance across different problems. In this work, we perform an overview of the main families of DL architectures for tabular data and raise the bar of baselines in tabular DL by identifying two simple and powerful deep architectures. The first one is a ResNet-like architecture which turns out to be a strong baseline that is often missing in prior works. The second model is our simple adaptation of the Transformer architecture for tabular data, which outperforms other solutions on most tasks. Both models are compared to many existing architectures on a diverse set of tasks under the same training and tuning protocols. We also compare the best DL models with Gradient Boosted Decision Trees and conclude that there is still no universally superior solution. The source code is available at https://github.com/yandex-research/rtdl.

Posts